
 

Third-Order Differential Variational Principles and Differential Equations of 
Motion for Mechanico-Electrical Systems 

Xiangwu Zhang 1, Naiping Wei1, Yuanyuan Li1, Xiaoxia Zhao1, Wenfeng Luo2 

1Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi’an University, Xi’an 710065, 
China 

2Xi’an University of Posts and Telecommunications, Xi’an 710121, China, China 

Keywords: Mechanico-Electrical System; Third-Order D’Alembert Principle; Third-Order 
D’Alembert-Lagrange Principle; Third-Order Differential Equations of Motion 

Abstract: This paper investigates the third-order differential variational principles of 
mechanico-electrical systems and the third-order differential equations of motion for holonomic 
mechanico-electrical systems. Based on Newton’s laws of motion of mechanical systems and 
Kirchhoff’s voltage laws of circuit systems, the third-order d’Alembert principles of 
mechanico-electrical systems are proposed, the third-order d’Alembert-Lagrange principle of 
mechanico-electrical systems is established and the parametric forms of Euler-Lagrange, Nielsen 
and Appell for this principle are given. Finally, the several different forms of the third-order 
differential equations of motion for holonomic mechanico-electrical systems are obtained. 

1. Introduction 
Mechanico-electrical systems, in which a mechanical process and an electromagnetic process are 

coupled to each other, play an important role in physics, mechanics and many fields of science and 
technology. Maxwell J C [1] described the mechanico-electrical systems by using Lagrange method, 
obtained the dynamical equations of the systems which are called the Lagrange-Maxwell equations 
afterwards. Mei et al. [2] established the Lagrange-Maxwell equations of discrete 
mechanico-electrical systems from the viewpoint of energy. Qiu [3] studied analytical dynamics of 
mechanico-electrical systems systematically, introduced the integral variational principles of 
electromagnetic systems and mechanical systems. Fu et al. [4] proposed the discrete variational 
principle and the first integrals for Lagrange-Maxwell mechanico-electrical systems. In recent years, 
some important results on the study of symmetries and conserved quantities of mechanico-electrical 
systems have also been obtained [5-16]. 

However, due to the change in operating conditions and the random disturbance of external load, 
the practical mechanico-electrical systems are often acted by variable mechanical forces and 
variable electromotive forces, so the research on the motion law of mechanico-electrical systems 
under the time rate of change of mechanical and electromotive force has important significance. 
Mei et al. [2] and Ma et al. [17-20] studied the third-order Lagrange equations for several different 
mechanical systems. Zhang [21-25] further studied the higher-order differential equations of motion 
for several different mechanical systems. But the researches on the third-order differential 
variational principles and the third-order differential equations of motion for mechanico-electrical 
systems have not been reported yet. 

In this paper, starting from Newton’s laws of motion for mechanical systems and Kirchhoff’s 
voltage laws for circuit systems, the third-order d’Alembert principles of mechanico-electrical 
systems are proposed, the third-order d’Alembert-Lagrange principle of mechanico-electrical 
systems and its parametric forms will be established, and the third-order Lagrange-Maxwell 
equations, Nielsen equations, and Appell equations of holonomic mechanico-electrical systems will 
be obtained. 
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2. Third-Order D’Alembert-Lagrange Principle of Mechanico-Electrical Systems 
Suppose that the mechanical part of mechanico-electrical systems, constituted by N particles, is 

described by s generalized coordinates qα ( 1, 2, , )sα =  ; the electromagnetic part of 
mechanico-electrical systems, constituted by 1m +  non-independent loops (where m inner loops 
and one outer loop) with linear conductors and capacitors, is described by m generalized electric 
quantities je ( 1, 2, , )j m=  . Based on the Newton’s laws of motion for the i-th particle and the 
Kirchhoff’s voltage laws for the k-th non-independent loop respectively, we have 

0i i i im− + + =r F R  ( 1, 2, , )i N=                                                (1) 
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where im  and ir  are, respectively, the mass and the position vector of i-th particle; iF  and 

iR  are, respectively, the active force and the constraint force acted on the i-th particle; klL ( )l k≠  
and kkL  are, respectively, the mutual inductance between the k-th and l-th loops, and the 
self-inductance of the k-th loop; kR  and kC  are, respectively, the resistance and the capacitance 
of the k-th loops; kE  and kE  are, respectively, the capacitor charge and the current of the k-th 
loop (with k kE I= ); kU  is the electromotive force of k-th loop. The electromechanical analogy 
shows that the equation (2) in electromagnetic systems is equivalent to the equation (1) in 
mechanical systems, therefore, equations (1) and (2) can be called the d’Alembert principles of 
mechanico-electrical systems. 

Differentiating Eqs.(1) and (2), we obtain 
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Equations (3) and (4) can be called the third-order d’Alembert principles of mechanico-electrical 
systems. Making the dot product with iδr  and summing over i for Eq.(3), multiplying by kEδ  
and summing over k for Eq.(4), and then adding them together, we have 
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where we assume that the condition of ideal constraint is satisfied, namely 

1
0

N

i i
i

δ
=

⋅ =∑R r                                                                (6) 

Equation (5) can be called the third-order d’Alembert-Lagrange principle of 
mechanico-electrical system. 

Now, we write the principle (5) in parametric forms. The position vector ir  of the i-th particle 
and the capacitor charge kE  of the k-th loop can be, respectively, expressible as 

( , )i i q tα=r r  ( 1, 2, , )sα =  , ( , )k k jE E e t=  ( 1, 2, , )j m=                             (7) 

and the variationals of ir  and kE  can be given by 
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From the relations (7), the second derivatives of ir  and kE  with respect to time t can be 
obtained. Taking the partial derivatives of ir  with respect to qα  and qα , kE  with respect to je  
and je  respectively, we have 

, 2i i i i

q q q qα α α α

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
r r r r  

 

, , 2k k k k

j j j j

E E E E
e e e e

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

  

 

                                  (10) 

Substituting Eqs.(8),(9) and (10) into principle (5), we obtain 
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where we notice that ( )kl klL L qα= , ( )k kC C qα= , and suppose that each resistance in the circuit 
is linear, that is, kR  and kE  are independent. 

Introducing the first velocity energy, the zero-order current energy (or the magnetic field energy), 
the first-order current energy, the zero-order electric field energy (or the electric field energy), the 
first-order electric field energy, the zero-order electric dissipative function, the first-order electric 
dissipative function of mechanico-electrical systems successively 
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and introducing the time rate of change of generalized active forces and the time rate of change 
of generalized electromotive forces 
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Substituting Eqs.(12) -(17) into Eqs.(11) , principle (5) can be written as 

{1 1 1 01 1

1 1 1

1 1( ) ( )
2 2

s m s
m m m

j j j j

W W WS Sd d dQ q q
dt q q dt e e dt e qα α α

α αα α α

d
= = =

∂ ∂ ∂∂ ∂ ∂
− + + + − + −

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ 

    

 

}10 0 1 1

1

( ) 0
s

m e e e
j j

j j j

W W F Wq U e
e q e eα

α α

δ
=

∂ − ∂ ∂∂
+ − − + =
∂ ∂ ∂ ∂∑ 

 

                                 (18) 

Considering the mechanical part of mechanico-electrical systems is not only acted by the time 
rate of change of potential, dissipative and non-potential force, but also by the time rate of change 
of ponderomotive force, Eq.(16) can be expressed as follow 

1 1 111 mFVQ Q Q
q qα α α
α α
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 ( 1, 2, , )sα =                                       (19) 

where 1 1( , )V V q qα α=   is the potential energy of time rate of change of conservative force, 

1 1( , , )m mF F q q qα α α=    is the first-order mechanical dissipative function, 1
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time rate of change of non-conservative generalized force which do not include mechanical 
dissipative force, 1Qα

∗  is the time rate of change of poderomotive force. Multiplying by kE  for 
both sides of Eq.(2), and summing over k , noticing Eqs.(13), (14) and 0 0 ( , )m m jW W q eα=  , 
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the energy balance equation of the system is 
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substituting Eq.(21) into Eq.(20), the pondermotive force can be expressed as follow 
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From Eq.(22), we have 
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Substituting Eq.(23) into Eq.(19), we obtain 
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Thus, Eq.(18) can be written as 
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Equation (25) is the parametric form of Euler-Lagrange for the third-order d’Alembert-Lagrange 
principle of mechanico-electrical systems. 

Introducing the first-order Lagrange function of mechanico-electrical systems 
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the principle (25) can also be written as 
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Introducing the first-order dissipative function of mechanico-electrical systems which equals to 
the sum of the first-order electrical and mechanical dissipative function, that is 

1 1 1( , ) ( , , )e j j mF F e e F q q qα α α= +                                                    (28) 

then, the principle (27) can also be expressed as the unified form 
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From the relations (7) and (8), the third-order derivatives of ir  and kE  with respect to time t 
can be obtained. The partial derivatives of ir  with respect to qα  and qα , and kE  with respect 
to je  and je  can be, respectively, given by 
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By utilizing Eqs.(8), (10), (13)-(17), (24) and (30), the principle (5) can also written as 
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Equation (31) is the parametric form of Nielsen for the third-order d’Alembert-Lagrange 
principle of mechanico-electrical systems. 

Introducing the second-order velocity energy and the second-order current energy of 
mechanico-electrical systems successively 
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the principle (5) can also be written as 
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Equation (33) is the parametric form of Appell for the third-order d’Alembert-Lagrange principle 
of mechanico-electrical systems. 

3. Third-Order Differential Equations of Motion for Holonomic Mechanico-Electrical 
Systems 

For the holonomic mechanico-electrical systems, because qαδ ( 1, 2, , )sα =   and jeδ  
( 1, 2, , )j m=   are independent of each other, thus by Eq.(25), we have 
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or by Eq.(29), we have 
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Equations (34) and (35) or Equations (36) and (37) can be called the third-order Euler-Lagrange 
equations of holonomic mechanico-electrical systems. 

By Eq.(31), we obtain 

111 1 1
0 0

3 ( )
2

m
m e

FS S V Q W W
q q q q qα
α α α α α

∂∂ ∂ ∂ ∂′− = − − + + −
∂ ∂ ∂ ∂ ∂



 

   

 ( 1, 2, , )sα =                     (38) 

11 0 1 1 0

1 1
( )

s s
m m e e e

k
j j j j j

dW W F W Wd q q U
e dt e dt q e e e qα α

α αα α= =

∂ ∂ ∂ ∂∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ 

   

 ( 1, 2, , )j m=        (39) 

Equations (38) and (39) can be called the third-order Nielsen equations of holonomic 
mechanico-electrical systems. 

By Eq. (33), we obtain 
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q q q qα
α α α α

∂∂ ∂ ∂′= − − + + −
∂ ∂ ∂ ∂

 

  

 ( 1, 2, , )sα =                           (40) 
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∂ ∂ ∂ ∂ ∂ ∂∑ ∑∑ ∑   
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1
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e e e

j
j j j

F W W q U
e e e q α

α α=

∂ ∂ ∂∂
+ + + =
∂ ∂ ∂ ∂∑ 

 

 ( 1, 2, , )j m=                                 (41) 

Equations (40) and (41) can be called the third-order Appell equations of holonomic 
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mechanico-electrical systems. 

4. Conclusion 
In this paper, we have established the third-order d’Alembert-Lagrange principle of 

mechanico-electrical systems and its parametric forms, and obtained the third-order differential 
equations of holonomic mechanico-electrical systems. The third-order differential variational 
principles and differential equations of mechanico-electrical systems not only is a supplement to the 
differential variational principles and differential equations of mechanico-electrical systems, but 
also is an extension of the theory of the third-order differential variational principles and differential 
equations. 
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